15 research outputs found

    Fractional Quantum Hall States of Clustered Composite Fermions

    Full text link
    The energy spectra and wavefunctions of up to 14 interacting quasielectrons (QE's) in the Laughlin nu=1/3 fractional quantum Hall (FQH) state are investigated using exact numerical diagonalization. It is shown that at sufficiently high density the QE's form pairs or larger clusters. This behavior, opposite to Laughlin correlations, invalidates the (sometimes invoked) reapplication of the composite fermion picture to the individual QE's. The series of finite-size incompressible ground states are identified at the QE filling factors nu_QE=1/2, 1/3, 2/3, corresponding to the electron fillings nu=3/8, 4/11, 5/13. The equivalent quasihole (QH) states occur at nu_QH=1/4, 1/5, 2/7, corresponding to nu=3/10, 4/13, 5/17. All these six novel FQH states were recently discovered experimentally. Detailed analysis indicates that QE or QH correlations in these states are different from those of well-known FQH electron states (e.g., Laughlin or Moore-Read states), leaving the origin of their incompressibility uncertain. Halperin's idea of Laughlin states of QP pairs is also explored, but is does not seem adequate.Comment: 14 pages, 9 figures; revision: 1 new figure, some new references, some new data, title chang

    Crystallization of a classical two-dimensional electron system: Positional and orientational orders

    Full text link
    Crystallization of a classical two-dimensional one-component plasma (electrons interacting with the Coulomb repulsion in a uniform neutralizing positive background) is investigated with a molecular dynamics simulation. The positional and the orientational correlation functions are calculated for the first time. We have found an indication that the solid phase has a quasi-long-range (power-law) positional order along with a long-range orientational order. This indicates that, although the long-range Coulomb interaction is outside the scope of Mermin's theorem, the absence of ordinary crystalline order at finite temperatures applies to the electron system as well. The `hexatic' phase, which is predicted between the liquid and the solid phases by the Kosterlitz-Thouless-Halperin-Nelson-Young theory, is also discussed.Comment: 3 pages, 4 figures; Corrected typos; Double columne

    Vertical Confinement and Evolution of Reentrant Insulating Transition in the Fractional Quantum Hall Regime

    Full text link
    We have observed an anomalous shift of the high field reentrant insulating phases in a two-dimensional electron system (2DES) tightly confined within a narrow GaAs/AlGaAs quantum well. Instead of the well-known transitions into the high field insulating states centered around ν=1/5\nu = 1/5, the 2DES confined within an 80\AA-wide quantum well exhibits the transition at ν=1/3\nu = 1/3. Comparably large quantum lifetime of the 2DES in narrow well discounts the effect of disorder and points to confinement as the primary driving force behind the evolution of the reentrant transition.Comment: 5 pages, 4 figure

    Persistent edge currents for paired quantum hall states

    Full text link
    We study the behavior of the persistent edge current for paired quantum Hall states on the cylinder. We show that the currents are periodic with the unit flux ϕ0=hc/e\phi_0=hc/e. At low temperatures, they exhibit anomalous oscillations in their flux dependence.The shape of the functions converges to the sawtooth function periodic with ϕ0/2\phi_0/2.Comment: RevTex 8 pages. one figure. to appear in Phys.Rev.

    Anisotropic transport in unidirectional lateral superlattice around half-filling of the second Landau level

    Full text link
    We have observed marked transport anisotropy in short period (a=92 nm) unidirectional lateral superlattices around filling factors nu=5/2 and 7/2: magnetoresistance shows a sharp peak for current along the modulation grating while a dip appears for current across the grating. By altering the ratio a/l (with l=sqrt{hbar/eB_perp} the magnetic length) via changing the electron density n_e, it is shown that the nu=5/2 anisotropic features appear in the range 6.6 alt a/l alt 7.2 varying their intensities, becoming most conspicuous at a/l simeq 6.7. The peak/dip broadens with temperature roughly preserving its height/depth up to 250 mK. Tilt experiments reveal that the structures are slightly enhanced by an in-plane magnetic field B_| perpendicular to the grating but are almost completely destroyed by B_| parallel to the grating. The observations suggest the stabilization of a unidirectional charge-density-wave or stripe phase by weak external periodic modulation at the second Landau level.Comment: REVTeX, 5 pages, 3 figures, Some minor revisions, Added notes and reference

    Beyond paired quantum Hall states: parafermions and incompressible states in the first excited Landau level

    Full text link
    The Pfaffian quantum Hall states, which can be viewed as involving pairing either of spin-polarized electrons or of composite fermions, are generalized by finding the exact ground states of certain Hamiltonians with k+1-body interactions, for all integers k > 0. The remarkably simple wavefunctions of these states involve clusters of k particles, and are related to correlators of parafermion currents in two-dimensional conformal field theory. The k=2 case is the Pfaffian. For k > 1, the quasiparticle excitations of these systems are expected to possess nonabelian statistics, like those of the Pfaffian. For k=3, these ground states have large overlaps with the ground states of the (2-body) Coulomb-interaction Hamiltonian for electrons in the first excited Landau level at total filling factors \nu=2+3/5, 2+2/5.Comment: 11 pages Revtex in two column format with 4 eps figures included in the M

    Structures for Interacting Composite Fermions: Stripes, Bubbles, and Fractional Quantum Hall Effect

    Full text link
    Much of the present day qualitative phenomenology of the fractional quantum Hall effect can be understood by neglecting the interactions between composite fermions altogether. For example the fractional quantum Hall effect at ν=n/(2pn±1)\nu=n/(2pn\pm 1) corresponds to filled composite-fermion Landau levels,and the compressible state at ν=1/2p\nu=1/2p to the Fermi sea of composite fermions. Away from these filling factors, the residual interactions between composite fermions will determine the nature of the ground state. In this article, a model is constructed for the residual interaction between composite fermions, and various possible states are considered in a variational approach. Our study suggests formation of composite-fermion stripes, bubble crystals, as well as fractional quantum Hall states for appropriate situations.Comment: 16 pages, 7 figure

    Enhanced stability of the square lattice of a classical bilayer Wigner crystal

    Full text link
    The stability and melting transition of a single layer and a bilayer crystal consisting of charged particles interacting through a Coulomb or a screened Coulomb potential is studied using the Monte-Carlo technique. A new melting criterion is formulated which we show to be universal for bilayer as well as for single layer crystals in the case of (screened) Coulomb, Lennard--Jones and 1/r^{12} repulsive inter-particle interactions. The melting temperature for the five different lattice structures of the bilayer Wigner crystal is obtained, and a phase diagram is constructed as a function of the interlayer distance. We found the surprising result that the square lattice has a substantial larger melting temperature as compared to the other lattice structures. This is a consequence of the specific topology of the defects which are created with increasing temperature and which have a larger energy as compared to the defects in e.g. a hexagonal lattice.Comment: Accepted for publication in Physical Review

    Linear temperature dependence of conductivity in the "insulating" regime of dilute two-dimensional holes in GaAs

    Full text link
    The conductivity of extremely high mobility dilute two-dimensional holes in GaAs changes linearly with temperature in the insulating side of the metal-insulator transition. Hopping conduction, characterized by an exponentially decreasing conductivity with decreasing temperature, is not observed when the conductivity is smaller than e2/he^{2}/h. We suggest that strong interactions in a regime close to the Wigner crystallization must be playing a role in the unusual transport.Comment: 3 pages, 2 figure

    The Quantum Hall Effect

    No full text
    corecore